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Generation of High-Frequency Radiation by

Quasi-Optical Gyrotron at Harmonics of

fhe Cyclotron Frequency
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Abstract—A quasi-opticaf gyrotron can operate, in principle, at high

harmonics of the electron-cyclotron frequency, as well as at the fundamen-

tal. Lower harmonics are suppressed by exploiting their larger diffraction

losses. The radiation-field amplitude is kept below the breakdown vahse by

taking advantage of the focusing properties of the quasi-optical resonator.

Cavity design parameters and starting currents are presented which char-

acterize tbe operation of the quasi-optical gyrotron at the eighth harmonic

of gyrofrequency.
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Fig. 1. A quasi-opticaf gyrotmn configuration with the magnetic field in the
z direction and the radiation bounciug back and forth in the y direction with
its electric-field polarization in the x direction.

I. INTRODUCTION

Presently, one of the main efforts in gyrotron research is
concerned with further shortening the wavelength of the radia-
tion. To this end, there has been interest in extrapolating gyrotron
operation to higher frequencies by utilizing a confocal quasi-opti-
cal cavity [1]–[9]. Here, an electron beam travels rdong a magnetic
field perpendicular to the axis of an optical cavity as shown in
Fig. 1. In order to operate at higher frequencies, one could
envision working at a higher magnetic field or operating at
harmonics of the cyclotron frequency. The latter method has
been analyzed in a quasi-opticrd cavity in both a time-indepen-
dent [1]–[9] and a multimode time-dependent [5]–[8] regime, It
has been shown [5]-[7] that, with suitable contouring of the dc
magnetic field, a stable single-mode operation of the device at
fundamental [5]–[7] and second harmonic of gyrofrequency [8] is
possible.

This paper shows that very high cyclotron-frequency harmonics

operation is possible in a quasi-optical gyrotron. Although we
only consider single-cavity gyrotron configurations with uniform
magnetic fields here, it is reasonably clear from earlier work that
the efficiency and coherence of the devices could be improved by
contouring the guide field and/or by utilizing a double-cavity
klystron configuration. Using this scheme, coherent radiation can
be produced with power levels of several kilowatts (with effi-
ciency of several percent) at wavelengths ranging from 3 mm,
using a permanent magnet, down to 130 pm, using a Nb3 Sn
superconducting magnet. The beam energy is typically 260 kV
and current 1 = 1 A. This voltage is larger than typical gyrotron
voltages, but is still small enough to be available commercially
[10].

This investigation is an extension of our earlier work [9] which
showed how to select cavity parameters for second- and third-
harmonic operation. Here, we show that the same considerations
can be applied to much higher harmonic operation, In a quasi-
optical configuration, all harmonics are eigenfunctions of the
cavity; therefore, the problem is to select cavity and beam param-
eters so as to achieve reasonable efficiency and coherent oscilla-
tion (i.e., suppression of lower harmonics) at the desired
frequency. In Section II, we review linear efficiency and suppres-
sion of lower harmonics in the optical resonator. In Section III,
we calculate specific beam and cavity parameters for gyrotron
operation at the eighth harmonic of gyrofrequency.

II. BEAM AND CAVITY PARAMETERS FOR HIGH-HARMONfC

QUASI-OPTICAL GYROTRON OPERATION

We now utilize the technique developed in [9] to describe the
interaction of a beam with the wave field in the quasi-optical

0018 -9480/84/1000-1398 $01.00 W984 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO: 10, OCTOBER 1984 1399

gyrotron at high harmonics. As was shown in [9], the cavity is
characterized by the half length of the cavity LY, the mirror radial
of curvature R ~, the radiation wavelength A, and the mirror
radial size p (assuming a circular-shaped mirror). In terms of
these parameters, the spot size of the radiation at the center of
the cavity is given by

‘o=[w-rr (1)

and the spot size at the mirror can be calculated to be

Ii

1/2

ARM 1
roM = ~

()

1/2 “
(2)

RM——
Ly 1

Consideration of the spot size at the mirror is important for two
reasons; first of ill, ro~/p governs the diffraction losses at the
mirror, and second, the field at the mirror must be below some
breakdown limit, Emm. However, the quasi-optical gyrotron gen-
erally works best at high field E. at the spot. If E. is larger thzui
E~a, one could also exploit the focusing properties of the
quasi-optical cavity to reduce the field at the mirror.

The field at the mirror in terms of the field at the spot is given
by

EMroM = Eoro (3)

so

[1
1/2

EM=EO I–#- ,
M

(4)

Then, as shown in [9], the fractional loss due to diffraction T is

[1
2

T=exp– 2 .
‘OM

(5)

The relation between diffraction losses at the different harmonics
n and m are related by

T.=(T~)n’m. (6)

The electric and magnetic fields in the resonator are approxi-
mated by

E1=E(z)sinkycoswf

B,= E(z) coskysincot (7)

where k = ti/c and

E(z) =Eoexp–(z2\ro).

Then, [9, eq. (12)] shows that the linearized small-signal efficiency
for an electron beam uniform in y is given by

%=:
(,o!l)yo(5r’’(%rJ’(’o)exP[-(’o+~/2]

[ ( )1“*$iJ;($o)+foJn(f)1-: (8)

where y. = [1 +(Pz~ + P~o)/m2c2]1/2, &o= kP10/mi20, G?.=
eBo/mc, to = (rou/c)/l?Zo, B~o = p~o/Woe, PLO = p~o/mYoc~
&J= a – nQo/yo, Jn, and J; are a Bessel function and deriva-

tive of a Bessel function of order n, respectively. The nonlinear
efficiency is found by integrating particle orbits, [9, eqs. (9)–(11)],
through the cavity fields.

The threshold condition for starting the excitation in the
resonator is

~pb,in ~ @~stored\Q (9)

where Pb,in = IV is the total electron beam power flowing into
the interaction cavity (1 is the current and V is the voltage),
c~tOredis the stored field energy where

cstored = (E~/16~)~r~Ly (10)

and the losses in the cavity are characterized by the Q factor. To
calculate Q, we assume power reflection coefficient 1 – ‘1’, so that
a fraction T is transmitted through or diffracted around the
mirror as output radiation. Neglecting the dissipation in the
mirrors, we get for

4LYU
Q=m. (11)

Hence, using (13) and (14), the power output is

TC*2
P=r@V==Eoro. (12)

Since c and Q are both proportional to Ly, the power output
is independent of Ly. If this were the only consideration, Ly
would not enter as a design parameter since the particle equa-
tions in the linear and nonlinear regime do not depend on Ly
either. However, another important consideration is whether the
radiation generated is single moded or multiple moded. Since the
mode spacing is Au/w =1/4 A\Ly, at the very small wave-
lengths we consider here, large Ly’s mean very closely spaced
modes and a greater likelihood of multimode operation with the
associated reduction in efficiency.

To calculate whether the output radiation is single moded or
multimode would require a time-dependent calculation of the
type done in [5]–[8]. However, the numerical scheme utilized
there is so inefficient at the high harmonics we consider that its
use is precluded. We will draw conclusions then based on the
results in [5]–[8] for time-dependent calculations at the funda-
mental and second harmonic.

In [5]-[8], there were two ranges of A/Ly studied. First, if
Ly /As 50, the results were nearly always single moded. As
Ly /A is increased to 2.5X103, the results became more likely to
be multimode. However, even if the output radiation were
multimode, there were always precise phase relations between the
modes and the spectrum that would depend in some way on
mode spacing. Thus, while multimode, the radiation was coherent
and not turbulent and the efficiency decrease was not large. For
Ly /A > 2.5x103, a radiation spectrum is produced in which the
spectral shape becomes independent of mode spacing. In all
cases, the radiation was more likely to be single moded in a
quasi-optical klystron configuration, if the prebunching frequency
and phase was properly selected.

Therefore, we recognize three possible ranges for Ly/A. First,
if Ly /A <50, the radiation will, in all likelihood, be single
moded in either a single- or double-cavity configuration. Second,
if 50< Ly/A <2500, a coherent spectrum of modes will be
excited. Here, a two-cavity klystron configuration could help to
eliminate unwanted sidebands. Third, if Ly/A >2500, a radia-
tion spectrum independent of mode spacing is generated. The
cavity designs we give here will be in either the first or second
range of Ly /A.

We now exploit the fact that, as the wave frequency (i.e.,
harmonic number) increases, the spot size decreases so that
diffraction losses also decrease.
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In order to operate a quasi-optical gyrotron at a harmonic n,
the linearized power into the cavity at that harmonic q.lV must
exceed the power 10ss u/Q.t S@red.However, at all lower harmon-
ics, the opposite must be true. Relating Q~ to Q. by (6), (11),
and (12), one easily calculates that the ratio of starting current at
the n th harmonic In to that at the m th harmonic is

wI.— . T:/w-l)

T?Jm
(13)

To find a regime where the n th harmonic will oscillate but lower
harmonics will not, we use (13) to pick a cavity so that I. is less
than all In, for m < n. Before doing so, however, note that V.
depends on detuning parameter Au/o. To determine the mini-
mum starting current at each harmonic, we must maximize q.
and q~ over detuning parameter. Then, the quasi-optical oscil-
lator can operate at harmonic n for currents between the starting
current I. and the starting current of a lower harmonic, In – ~.

III. SPECIFIC DESIGN PARAMETERS FOR n = 8

To operate at high harmonics, we find that both larger beam
energy and pitch angle are required than for operation at the
fundamental or low harmonics. Accordingly, we consider yO= 1,51
(260 kV beam) and pitch angle a = 1.25 rad, so that pl ,/pllo = 3,
Then, the eighth harmonic corresponds to 5.3 times the nonrela-
tivistic cyclotron frequency.

As is shown in (12), the current for start oscillation at the
eighth harmonic is given by

Is= 4.34x1079

where we have introduced the dimensionless electric field

~ = GeEoro
o

mc2

(14)

(15)

Also, 1 is in amperes and V is in volts, but CGS units are used
elsewhere. Since q is the linearized efficiency and proportional to
E;, 18 is, of course, independent of Eo. In Table I are given start
oscillation currents for the eighth harmonic at various values of
u r. /c. Performing the optimization of q8 on variation of Au/w,
we used (8) and assumed that T8 =10-3.

In Table II, we calculate the ratio of starting currents between
the seventh and eighth harmonic as a function of TX, It turns out
that 17/18 is independent of the or. /c value. For T8 as small as
10-3, it is clear that there is an appreciable range of currents for
which the eighth harmonic will oscillate but the seventh will not.

We now give results of calculations of nonlinear efficiency. The
calculations assume a cavity with radiation at the eighth cyclotron
harmonic with fixed amplitude fio and phase. The nonlinear
efficiency is calculated by integrating the orbits of an ensemble of
particles through the cavity as described in [9]. In the orbit
integrations, the fast ( - l/ti ) time scale is averaged out so that
the integration time step size can be much larger than Ll; 1. In all
nonlinear orbit calculations, we have assumed that the electron
beam is localized at field maxima. This gives roughly twice the
efficiency one would calculate for the technologically simpler
case of a uniform in y electron beam. The nonlinear efficiency,
assuming a r. /c = 45, is calculated as a function of ~. for three
different frequency shifts, Aw/o = 1, 1.3, and 1.6 percents. The
results are shown in Fig. 2, The result is characteristic [8] for
gyrotrons operating in a quasi-optical cavity, namely, larger
frequency shifts give larger efficiencies, but at larger electric
fields.

TABLE I

STARTING CURRENTS AT THE EIGHTH CYCLOTRON lhmotwc AS A

FUNCTION OF @r. /c, WITH T8 = 0.1 PERCENT AND yO = 1.51

(Jro/c 20 45 90

18(Amp) 1.33 0.54 0.27

TABLE II
RATIOS OF STARTING Cummrrs AT SEVEN l%msorwc TO

STARTING CURRENT AT EIGHT ILwwoiwrc AS A FUNCTION OF ‘T8

l’8(percent) 1 0.5 0.1
17/18 1.1 1.2 1.5

Xlo-1

‘“~

0,75 -

?

0.5 -

0.25 -

0.25 05 0.75 1.0
rlg L
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Fig. 2. Nontinear efficiency as a function of &o at n = 8 for a beam with
a = 1,25 rad~, Y. = L51, and orO/c = 45. Solid, dashed, and dashed-dot

lines represent Am/u =1, 1.3, and 1.6 percents, respectively.

We next consider the dependence of efficiency on pitch angle
for the case of Au/u= 1.3 percent and ~ro/c = 45. The results
are shown in Fig. 3. Our typical value, a =1.2–1.3 (pLo/pl10 =

2.5-3.6), gives both reasonable efficiency and is practically
achievable [11]. In Fig. 3 are shown calculated efficiencies as a
function of flo at different values of uro /c. The value generally

selected, @ro/c = 45, appears to be optimal, although ur~ /c = 90
is also feasible, especially when working at higher electric-fields.

Since we are considering operation at a very high harmonic
(n= 8), a natural question is how sensitive the results are to
thermal spread. Since the resonance condition u = n fl / y does
not depend on pitch angle a, the results are very insensitive to
spread in a (emittance) [8]. A more serious concern is the
dependence on energy spread. Fig. 4 gives q as a function of ~.
for a beam with Ati/ti = 1.2 percent, tirO = 45, and a =1.25 with
a Gaussian spread in y., ~(yo) = l/(fi 8y) exp – [(y. – AY)/AY]2
at three different energy spreads, Ay/ y. = O, 1 percent, and 2.5
percent. An energy spread of 1 percent is tolerable, but an energy
spread of 2.5 percent seriously degrades the efficiency of the
resonator.

Assuming that the energy spread comes principally from the
induced electrostatic potential across the beam, we find Ay/ y =
nne 2r~/ y mc2 = 2x106 l(amps)\ y V=(cm/see). For the beams
we consider, 1-1, V, -3 x109, the fractional energy spread will
be very small, well under 1 percent.

To summarize, efficiencies in excess of 5 percent are theoreti-
cally achievable at the eighth cyclotron harmonic for a quasi-opti-
cal gyrotron resonator for a pencil beam, centered at field max-
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Fig. 3. Nonlinear efficiency as a function of & at n = 8 for a beam with
y.= 1.51, Ace/o =1.3 percent, and (a) orO/c = 45, where sofid, dash-dot,
and dashed lines represent a = 1.2, 1.3, and 1.4, respectivelfi (b) a = 1.25,
where dashed, sofid, and dash-dot lines represent @rO/c = 20, 45, and 90,
respectively.
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Fig. 4. Nonlinear efficiency as a function of & at n = 8 for a beamwith
Gaussianspreadin yOwith a =1.51, y~ = 1.51, Au/u= 1/2 percent, and
@ro/c = 45. Solid, dashed, and dash-dot lines represent Ay/yO = O, 0.01,
and 0.025, respectively.

itna, having energy of 260 kV, a =1.25, Ay/yO <1 percent, and
u rO/c = 45. For the technologically simpler case of a uniform
beam, the calculated efficiencies are in excess of 2–3 percent.
Also, by properly choosing the mirror size, it is possible to find a
range of beam currents where the eighth harmonic is the lowest
oscillating frequency. While these figures may be somewhat opti-
mistic because of the idealized nature of the calculation, it is
important to note that we did not consider efficiency-enhance-
ment schemes either. Previous experience has shown that either
contouring the guide field, and/or using a double-cavity klystron
configuration, the efficiency could be significantly enhanced.

TABLE III

CAWTY PARAMETERS FOR QUASI-OPTICAL GYROTRON OPERATING

AT EIGHTH HARMONIC OF GYROFIUQURNCY WITH yO = 1.51,

1’8 = 0.1 PERCENT FOR DIFFERENT BO

B. Ly P

(kG) uro/c j. fi~, RM/Ly (cm) (cm)

7 45 <1 1.28 2 43 7.7
50 45 .4 .18 1.3 12 1.52

150 90 .6 .12 1.042 42 2.63
150 45 .3 .06 1.042 10.6 1.32
150 45 .5 .06 1.015 18 2.2

To conclude, we give specific designs for an eighth harmonic
resonator (assuming ‘I’S=10 – 3) at three magnetic fields. These
are a permanent magnet with B = 7 kG, A = 0.2!3 cm; a Nb-Ti
super-conducting magnet with B = 50 kG, A’= 400 pm; and a
high field Nb3Sn super-conducting magnet with B =150 kG,
A =134 pm. The breakdown field is assumed to be 2 x 10s V/cm,
so the field at the mirror must be equal to or less than this. In
dimensionless units, EB~ = 0.2 (urO/c)l/B, where B is kG. To
design the cavity, we assume first a confocal cavity with R ~/Ly
=2. Generally this is satisfactory for lower frequencies. How-

ever, as the frequency increases (at constant @rO/c), the field at
the mirror begins to increase until, at some frequency, it exceeds
the breakdown field. At this point, the mirrors must be moved
further back, increasing Ly. In Table III are shown design
parameters for quasi-optical cavities at the three selected values
of magnetic field. The beam current is in the range shown in
Tables I and II. For the 7-kG field, 0.29-cm wavelength case, a
shorter cavity (smaller Ly ) can be used if desired because the
field is so much below the breakdown field, so that Ly/A <50
can be satisfied. For the shorter wavelengths, so that Ly falls in
the second range 50< Ly/A <2.5 X103 so that a coherent multi-
mode state will most likely be generated. It is here that a
double-cavity klystron configuration could help by making the
output more single moded.
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