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Electron Dynamics Division, Hughes Aircraft Company, for
supplying the diodes.
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Generation of High-Frequency Radiation by
Quasi-Optical Gyrotron at Harmonics of
the Cyclotron Frequency

BARUCH LEVUSH anp WALLACE M. MANHEIMER

Abstract —A quasi-optical gyrotron can operate, in principle, at high
harmonies of the electron-cyclotron frequency, as well as at the fundamen-
tal. Lower harmonics are suppressed by exploiting their larger diffraction
losses. The radiation-field amplitude is kept below the breakdown value by
taking advantage of the focusing properties of the quasi-optical resonator.
Cavity design parameters and starting currents are presented which char-
acterize the operation of the quasi-optical gyrotron at the eighth harmonic
of gyrofrequency.
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Fig. 1. A quasi-optical gyrotron configuration with the magnetic field in the
z direction and the radiation bouncing back and forth in the y direction with
its electric-field polarization in the x direction.

I. INTRODUCTION

Presently, one of the main efforts in gyrotron research is
concerned with further shortening the wavelength of the radia-
tion. To this end, there has been interest in extrapolating gyrotron
operation to higher frequencies by utilizing a confocal quasi-opti-
cal cavity [1]-[9]. Here, an electron beam travels along a magnetic
field perpendicular to the axis of an optical cavity as shown in
Fig. 1. In order to operate at higher frequencies, one could
envision working at a higher magnetic field or operating at
harmonics of the cyclotron frequency. The latter method has
been analyzed in a quasi-optical cavity in both a time-indepen-
dent {1]-[9] and a multimode time-dependent [5]-[8] regime. It
has been shown [5]-{7] that, with suitable contouring of the dc
magnetic field, a stable single-mode operation of the device at
fundamental [5]-[7] and second harmonic of gyrofrequency [8] is
possible.

This paper shows that very high cyclotron-frequency harmonics
operation is possible in a quasi-optical gyrotron. Although we
only consider single-cavity gyrotron configurations with uniform
magnetic fields here, it is reasonably clear from earlier work that
the efficiency and coherence of the devices could be improved by
contouring the guide field and/or by utilizing a double-cavity
klystron configuration. Using this scheme, coherent radiation can
be produced with power levels of several kilowatts (with effi-
ciency of several percent) at wavelengths ranging from 3 mm,
using a permanent magnet, down to 130 pm, using a Nb;Sn
superconducting magnet. The beam energy is typically 260 kV
and current I =1 A. This voltage is larger than typical gyrotron
voltages, but is still small enough to be available commercially
[10].

This investigation is an extension of our earlier work [9] which
showed how to select cavity parameters for second- and third-
harmonic operation. Here, we show that the same considerations
can be applied to much higher harmonic operation. In a quasi-
optical configuration, all harmonics are eigenfunctions of the
cavity; therefore, the problem is to select cavity and beam param-
cters so as to achieve reasonable efficiency and coherent oscilla-
tion (i.e., suppression of lower harmonics) at the desired
frequency. In Section II, we review linear efficiency and suppres-
sion of lower harmonics in the optical resonator. In Section III,
we calculate specific beam and cavity parameters for gyrotron
operation at the eighth harmonic of gyrofrequency.

II. BeaM AND CAVITY PARAMETERS FOR HiGH-HARMONIC
Quast-OPTICAL GYROTRON OPERATION

We now utilize the technique developed in [9] to describe the
interaction of a beam with the wave field in the quasi-optical
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gyrotron at high harmonics. As was shown in [9], the cavity is
characterized by the half length of the cavity L, the mirror radial
of curvature R,,, the radiation wavelength A, and the mirror
radial size p (assuming a circular-shaped mirror). In terms of
these parameters, the spot size of the radiation at the center of

the cavity is given by

AL, [ R 1271/2
=2 =M
ro—[ = )
and the spot size at the mirror can be calculated to be
1/2
rOM = T R 1/2 ° (2)
()
L}"

Consideration of the spot size at the mirror is important for two
reasons; first of all, r,,,/p governs the diffraction losses at the
mirror, and second, the field at the mirror must be below some
breakdown limit, E_, . However, the quasi-optical gyrotron gen-
erally works best at high field E, at the spot. If E, is larger than
E, .., one could also exploit the focusing properties of the
quasi-optical cavity to reduce the field at the mirror.

The field at the mirror in terms of the field at the spot is given
by
3)

Eytom = Eory

SO

L 1,2
M

Then, as shown in [9], the fractional loss due to diffraction T is

T=e@—[iLr. ®)

om
The relation between diffraction losses at the different harmonics
n and m are related by

T,=(T,)"". (6)

The electric and magnetic fields in the resonator are approxi-
mated by

E, = E(z)sin kycos wt
B, = E(z)coskysinwt @)
where k= w/c and

E(z)=Eyexp—(z%/1y).

Then, [9, eq. (12)] shows that the linearized small-signal efficiency
for an electron beam uniform in y is given by

7 1 E ,
M= Z—(——I)Y—O(Bz) So( - ) Ja (ﬁo)CXP[ (éo o )/2]
Aw
{“ﬁ §H%%Nﬁd(9@—gd](@
0
where y,=[1+(P%+ P}o)/m’c®]'?, &g=kP o/ mQy, Qo=
eBy/mc, £, = (rew/¢)/Bros> Bro= Pro/mYoC, BLo=P Lo/ MY0eC,

Aw=w—n8/Yy, Jy, and J, are a Bessel function and deriva-
tive of a Bessel function of order n, respectively. The nonlinear
efficiency is found by integrating particle orbits, [9, egs. (9)-(11)},
through the cavity fields.
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The threshold condition for starting the excitation in the
resonator is

nPb,in 2 ""estored/Q (9)

where P, ;,=1IV is the total electron beam power flowing into
the interaction cavity (I is the current and V is the voltage),
€0rea 15 the stored field energy where

€qtored = (E3/167) 7r2L, (10)

and the losses in the cavity are characterized by the Q factor. To
calculate Q, we assume power reflection coefficient 1 — T, so that
a fraction T is transmitted through or diffracted around the
mirror as output radiation. Neglecting the dissipation in the
mirrors, we get for
4L, 1
Q - c ( )

Hencé, using (13) and (14), the power output is

P=qIV= %ZEO . (12)

Since € and @ are both proportional to L,, the power output
is independent of L,. If this were the only consideration, L,
would not enter as a design parameter since the particle equa-
tions in the linear and nonlinear regime do not depend on L,
cither. However, another important consideration is whether the
radiation generated is single moded or multiple moded. Since the
mode spacing is Aw/w=1/4 A/L,, at the very small wave-
lengths we consider here, large L,’s mean very closely spaced
modes and a greater likelihood of multimode operation with the
associated reduction in efficiency.

To calculate whether the output radiation is single moded or
multimoded would require a time-dependent calculation of the
type done in [5]-[8]. However, the numerical scheme utilized
there is so inefficient at the high harmonics we consider that its
use is precluded. We will draw conclusions then based on the
results in [5]-[8] for time-dependent calculations at the funda-
mental and second harmonic.

In [5]-[8], there were two ranges of A /L, studied. First, if
L,/A <50, the results were nearly always smgle moded. As
L /A is increased to 2.5 X 103, the results became more likely to
be multimoded. However, even if the output radiation were
multimode, there were always precise phase relations between the
modes and the spectrum that would depend in some way on
mode spacing. Thus, while multimode, the radiation was coherent
and not turbulent and the efficiency decrease was not large. For
L,/A>25X% 103, a radiation spectrum is produced in which the
spectral shape becomes independent of mode spacing. In all
cases, the radiation was more likely to be single moded in a
quasi-optical klystron configuration, if the prebunching frequency
and phase was properly selected.

Therefore, we recognize three possible ranges for L, /A. First,
if L,/A<50, the radiation will, in all likelihood, be single
moded in either a single- or double-cavity configuration. Second,
if 50<L,/A <2500, a coherent spectrum of modes will be
excited. Here, a two-cavity klystron configuration could help to

. eliminate unwanted sidebands. Third, if L,/A > 2500, a radia-

tion spectrum independent of mode spacing is generated. The
cavity designs we give here will be in either the first or second
range of L, /A.

We now exploit the fact that, as the wave frequency (ie.,
harmonic number) increases, the spot size decreases so that
diffraction losses also decrease.
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In order to operate a quasi-optical gyrotron at a harmonic n,
the linearized power into the cavity at that harmonic 1,7V must
exceed the power loss /Q,€oreq- HOWever, at all lower harmon-
ics, the opposite must be true. Relating Q,, to Q, by (6), (11),
and (12), one easily calculates that the ratio of starting current at
the nth harmonic 7, to that at the mth harmonic is

I
;lnl,,_ =1,/ (13)
m-m

To find a regime where the nth harmonic will oscillate but lower
harmonics will not, we use (13) to pick a cavity so that 7, is less
than all 7,, for m < n. Before doing so, however, note that 7,
depends on detuning parameter Aw/w. To determine the mini-
mum starting current at each harmonic, we must maximize 7,
and 7, over detuning parameter. Then, the quasi-optical oscil-
lator can operate at harmonic # for currents between the starting
current [, and the starting current of a lower harmonic, I,_;.

III. SPECIFIC DESIGN PARAMETERS FOR 1 =8

To operate at high harmonics, we find that both larger beam
energy and pitch angle are required than for operation at the
fundamental or low harmonics. Accordingly, we consider y, =1.51
(260 kV beam) and pitch angle a=1.25 rad, so that p , /p o =3.
Then, the eighth harmonic corresponds to 5.3 times the nonrela-
tivistic cyclotron frequency.

As is shown in (12), the current for start oscillation at the
eighth harmonic is given by

2
- 1 Y3 Eo
Iy = 4341072 (14)
where we have introduced the dimensionless electric field
. \f'r? ek, r,
Ey=—T2. (15)
mc

{
Also, I is in amperes and ¥ is in volts, but CGS units are used
elsewhere. Since 7 is the linearized efficiency and proportional to
E¢, Iy is, of course, independent of E,. In Table I are given start
oscillation currents for the eighth harmonic at various values of
wry /c. Performing the optimization of 74 on variation of Aw/w,
we used (8) and assumed that Ty =103,

In Table II, we calculate the ratio of starting currents between
the seventh and eighth harmonic as a function of Ts. It turns out
that I, /Iy is independent of the wr, /¢ value. For Tg as small as
1073, it is clear that there is an appreciable range of currents for
which the eighth harmonic will oscillate but the seventh will not.

We now give results of calculations of nonlinear efficiency. The
calculations assume a cavity with radiation at the eighth cyclotron
harmonic with fixed amplitude £, and phase. The nonlinear
efficiency is calculated by integrating the orbits of an ensemble of
particles through the cavity as described in [9]. In the orbit
integrations, the fast ( ~1/w) time scale is averaged out so that
the integration time step size can be much larger than Q7. In all
nonlinear orbit calculations, we have assumed that the electron
beam is localized at field maxima. This gives roughly twice the
efficiency one would calculate for the technologically simpler
case of a uniform in y electron beam. The nonlinear efficiency,
assuming wr, /c = 45, is calculated as a function of £, for three
different frequency shifts, Aw/w =1, 1.3, and 1.6 percents. The
results are shown in Fig. 2. The result is characteristic [8] for
gyrotrons operating in a quasi-optical cavity, namely, larger
frequency shifts give larger efficiencies, but at larger electric
fields.
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TABLE I
STARTING CURRENTS AT THE E1IGHTH CYCLOTRON HARMONIC AS A
FUNCTION OF wry /¢, WITH Ty = 0.1 PERCENT AND vy, =1.51

wry/c 20 45 90
I;(Amp) 1.33 0.54 027

TABLEII
RATIOS OF STARTING CURRENTS AT SEVEN HARMONIC TO
STARTING CURRENT AT EIGHT HARMONIC AS A FUNCTION OF T§

Tg(percent) 1 0.5 0.1
L/ 11 12 15

0.25r

075 1.0
Tg ¢ R

Fig. 2. Nonlinear efficiency as a function of Ey at n =8 for a beam with
a=1.25 radian, y,=1.51, and wry/c=45. Solid, dashed, and dashed-dot
lines represent Aw/w =1, 1.3, and 1.6 percents, respectively.

We next consider the dependence of efficiency on pitch angle
for the case of Aw/w =1.3 percent and w#,/c=45. The results
are shown in Fig. 3. Our typical value, a=12-1.3 (p o/po=
2.5-3.6), gives both reasonable ecfficiency and is practicalty
achievable [11]. In Fig. 3 are shown calculated efficiencies as a
function of £, at different values of wry /c. The value generally
selected, wry /¢ = 45, appears to be optimal, although wr, /c =90
is also feasible, especially when working at higher electric fields.

Since we are considering operation at a very high harmonic
(n=28), a natural question is how sensitive the results are to
thermal spread. Since the resonance condition w=nQ/y does
not depend on pitch angle «, the results are very insensitive to
spread in « (emittance) [8]. A more serious concern is the
dependence on energy spread. Fig. 4 gives 7 as a function of
for a beam with Aw/w =1.2 percent, wry = 45, and a=1.25 with
a Gaussian spread in y5, f(v,) =1/(V7 8y)exp—[(y, — Ay)/Ay]?
at three different energy spreads, Ay/y, =0, 1 percent, and 2.5
percent. An energy spread of 1 percent is tolerable, but an energy
spread of 2.5 percent seriously degrades the efficiency of the
resonator.

Assuming that the energy spread comes principally from the
induced electrostatic potential across the beam, we find Ay/y =
mne’ri/yme? = 2X10° I(amps)/y¥,(cm/sec). For the beams
we consider, I ~1, ¥, ~ 3x10°, the fractional energy spread will
be very small, well under 1 percent.

To summarize, efficiencies in excess of 5 percent are theoreti-
cally achievable at the eighth cyclotron harmonic for a quasi-opti-
cal gyrotron resonator for a pencil beam, centered at field max-
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Fig. 3. Nonlinear efficiency as a function of Eo at n=28 for a beam with
Yo =1.51, Aw/ew=1.3 percent, and (a) wry/c= 45, where solid, dash-dot,
and dashed lines represent a=1.2, 1.3, and 1.4, respectively; (b) a=1.25,
where dashed, solid, and dash-dot lines represent wry/c= 20, 45, and 90,
respectively.

025

Fig. 4. Nonlinear efficiency as a function of Ey at #n =8 for a beam with
Gaussian spread in y, with a=1.51, y5=1.51, Aw/w=1/2 percent, and
wry/c=45. Solid, dashed, and dash-dot lines represent Ay/yg=0, 0.01,
and 0.025, respectively.

ima, having energy of 260 kV, a =125, Ay/y, <1 percent, and
wry/c=45. For the technologically simpler case of a uniform
beam, the calculated efficiencies are in excess of 2-3 percent.
Also, by properly choosing the mirror size, it is possible to find a
range of beam currents where the eighth harmonic is the lowest
oscillating frequency. While these figures may be somewhat opti-
mistic because of the idealized nature of the calculation, it is
important to note that we did not consider efficiency-enhance-
ment schemes either. Previous experience has shown that either
contouring the guide field, and /or using a double-cavity klystron
configuration, the efficiency could be significantly enhanced.

AT EIGHTH HARMONIC OF GYROFREQUENCY WITH Y, =1.51,

TABLE III
CAVITY PARAMETERS FOR QUASI-OPTICAL GYROTRON OPERATING

Ty = 0.1 PERCENT FOR DIFFERENT B,

B, L, P
&G) wry/c E, Ez Ry,/L, (cm) (cm)
7 45 <1 128 2 43 17
50 45 4 18 13 12 152
150 90 6 12 1042 42 263
150 45 3 06 1042 106 1.32
150 45 5 06 1015 18 22
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To conclude, we give specific designs for an eiglith harmonic
resonator (assuming Ty =1072) at three magnetic fields. These
are a permanent magnet with B=7 kG, A =029 cm; a Nb-Ti
super-conducting magnet with B =50 kG, A =400 pm; and a
high field Nb;Sn super-conducting magnet with B =150 kG,
A =134 pm. The breakdown field is assumed to be 2xX10° V/cm,
so the field at the mirror must be equal to or less than this. In
dimensionless units, Egg=0.2 (wr,/c)1/B, where B is kG. To
design the cavity, we assume first a confocal cavity with R, /L,
= 2. Generally this is satisfactory for lower frequencies. How-
ever, as the frequency increases (at constant wry /¢), the field at
the mirror begins to increase until, at some frequency, it exceeds
the breakdown ficld. At this point, the mirrors must be moved
further back, increasing L,. In Table III are shown design
parameters for quasi-optical cavities at the three selected values
of magnetic field. The beam current is in the range shown in
Tables I and IL. For the 7-kG field, 0.29-cm wavelength case, a
shorter cavity (smaller L,) can be used if desired because the
field is so much below the breakdown field, so that L, /A < 50
can be satisfied. For the shorter wavelengths, so that L falls in
the second range 50 < L, /A <2.5X10° so that a coherent multi-
mode state will most hkely be generated. It is here that a
double-cavity klystron configuration could help by making the
output more single moded.
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